咨询热线

17710047555
当前位置: 首页 > 可行性研究报告

投资咨询

Consultation

动力电池回收项目可行性研究报告-降本与突破锂约束,构成锂电循环闭环(碳中和)

动力电池回收项目可行性研究报告-降本与突破锂约束,构成锂电循环闭环(碳中和)
1、回收锂电的意义
1.1、电动车产业快速发展,动力电池退役量庞大
全球新能源汽车行业发展迅速,2020年全球新能源汽车销量309.52万辆,同比+40.16%,其中纯电动汽车销量212.61万辆,同比+29.58%,在新冠肺炎疫情的冲击下逆势增长。我们预计2021-25年全球新能源汽车销量增速有望在30%以上,到2025年销量将突破1300万辆。
中国新能源汽车产业于21世纪初期兴起,自09年“十城千辆”工程启动,2013-14年推广应用新能源汽车并免征购置税,2015年4月财政部发布《关于2016-2020年新能源汽车推广应用财政支持政策的通知》,对新能源汽车购买给予补助实行普惠制,财政补贴成为推动中国新能源产业的主要增长力量。随着新能源汽车购置补贴逐步退坡,2017年开始推行的“双积分”政策接力继续推动新能源产业发展。我们预计我国新能源汽车销量未来5年增长率稳定在30%-40%,到2025年有望超过600万辆。
在电动汽车市场快速增长带动下,动力型锂离子电池继续保持快速增长势头。按照正极材料动力电池可分为三元电池、磷酸铁锂电池及其他电池。目前看,海外以三元电池为主,国内三元电池和磷酸铁锂同步发展。全球动力电池年新增装机量保持稳定增长,我们预计2025年装机量可达623GWh;国内装机量可达312GWh。其中三元电池装机量达174.5GWh,磷酸铁锂装机量达137.4GWh。
1.2、全球电动化趋势下,锂资源约束几何
在碳中和背景下,电动车和储能市场将快速增长,根据BNEF在2020年的预测:(1)2020-2040年,全球电动乘用车销售量将从约200余万辆,增加至约5500万辆(约3300GWh,以60kWh/辆计算),是2020年的27.5倍;(2)2020-2050年,全球储能市场累计装机量将从约20GWh,增至约1700GWh,是2020年的85倍。
(3)从锂盐产能、成本分布和锂价趋势看,不同资源禀赋、地区政策导致开采难度和投资、成本不同,未来不同时间、不同区域供需有一定的错配,锂价格大幅波动也再所难免,若锂价大幅上涨,将不利于实现碳中和愿景。
1.3、动力电池梯次利用与材料回收市场空间
1.3.1、动力电池报废量及梯次利用量空间预测
我们对未来三元电池的金属回收市场空间及磷酸铁锂电池的梯次利用与回收市场空间设计了测算模型,首先作出如下假设:
(1)三元电池:
1)在循环充放电过程中电池容量会逐渐衰减,当衰减至80%以下时,便达到退役状态。通常,动力电池的服役年限在5年左右。我们假设三元电池与磷酸铁锂电池的有效寿命均为5年。因此,截至目前,第一批动力电池己经到达退役年限,今后将迎来较为持续且不断扩大的动力电池回收市场。在此假设下,2014年装机的三元(磷酸铁锂)电池将在2019年全部拆解回收,2015年装机的三元(磷酸铁锂)电池将在2020年全部拆解回收,以此类推。
2)对退役三元电池的处理主要采取拆解回收的方式。拆解回收主要是对正极材料中的钴、镍、锰、锂等金属材料的回收再利用,而正极材料又分为NCM333、NCM523、NCM622、NCM811等,且不同的技术路线能量密度不同。随着三元电池行业的发展,高镍、无钴成为主要发展趋势,我们对未来年份正极材料各金属占比进行假设,并进行测算。
我们估算:2019年预计可回收三元正极0.13万吨,随后逐年递增至2030年的29.25万吨。
根据各类型三元正极测算金属回收量,加总得到三元电池总的各金属回收量:
1)NCM333:随着2014年安装的NCM333三元电池于2019年开始退役,2019到2022年NCM333回收量逐步增加,2022年达峰值1.28万吨,随后由于NCM333的退出而逐步减少,至2026年回收量归零;
2)NCM523:2016年开始进入市场的NCM523于2021年开始报废回收,随后回收量于23-28年稳定在4-6万吨之间,预计2030年上涨至10.78万吨;
3)NCM622:2017年流入市场的NCM622于2022年开始报废回收,回收量小幅上涨,直到28年上涨幅度增加,预计2030年可回收6.03万吨;
4)NCM811:2018年流入市场的NCM811于2023年开始报废回收,预计2030年可增长至12.44万吨。
预计2030年可回收锂2.09万吨,镍11.47万吨,钴2.80万吨,锰3.23万吨。
对于磷酸铁锂电池,我们预测:
1)2030年,报废铁锂电池将达到31.33万吨;
2)随着梯次利用逐年上升,预计2030年可梯次利用的铁锂电池达109.93GWh,共25.06万吨;其余6.27万吨进行拆解回收,可回收锂元素0.28万吨;
3)2027年梯次利用的磷酸铁锂电池将在2030年达到报废标准,此时拆解回收8.604万吨,可回收锂元素0.379万吨。二者总计可以回收锂元素0.65万吨。
1.3.2、动力电池报废及梯次利用市场空间敏感性预测
由于金属价格变动对动力电池回收和梯次利用经济性、市场释放和产值空间有着巨大影响,我们对未来三元电池的金属回收市场空间及铁锂电池的回收与梯次利用市场空间设计了价格敏感性分析,并作出如下假设:
1)为测算市场空间,我们选取了三个不同时期的金属价格进行敏感性测算,分为高价、现价(2021/1/22)、低价。其中高价与低价分别采用2014Q1-2018Q4的历史高价与历史低价进行评估测算。
2)进行敏感性分析时,我们在改变金属市场价格的同时,三元电池正极材料占比与磷酸铁锂电池梯次回收比例不变。
3)我们假设磷酸铁锂电池的每瓦时价格从2014年的2.17元/Wh降低至2025年的0.55元/Wh,其中21-25年降低速度逐渐减慢。梯次利用的残值价格分为高(40%)、中(30%)、低(20%)三档分别进行残值折算。
在金属处于高价时,到2030年三元电池锂/镍/钴/锰回收市场空间预计195.82/176.63/186.13/6.40亿元。在金属处于现价时,2030年三元电池锂/镍/钴/锰回收市场空间预计103.67/154.24/85.80/5.29亿元。在金属处于低价时,2030年三元电池锂/镍/钴/锰回收市场空间预计81.68/73.65/54.41/3.00亿元。2020-2030年三元电池累计回收空间在现价情况下将达到1305亿元。
2、政策正在完善,标准、价格是核心掣肘
2016年12月,工信部发布《新能源汽车动力蓄电池回收利用管理暂行办法》(征求意见稿),明确了汽车生产企业承担动力蓄电池回收利用主体责任。生产者责任延伸制度(EPR)是指将生产者的责任延伸到产品的整个生命周期,特别是产品消费后的回收处理与再生利用阶段,要求生产者在产品全生命周期担责,把生产和回收串联起来,提升回收利用率。
2018年7月,工信部、科技部等七部门联合印发《关于做好新能源汽车动力蓄电池回收利用试点工作的通知》,决定在京津冀地区、山西、上海、江苏、浙江、安徽、广东等17个地区及中国铁塔开展新能源汽车动力蓄电池回收利用试点工作,并确定各试点地区相应的目标任务,这有助于建立相对集中、跨区联动的回收体系。随着相关政策的陆续出台,动力电池回收体系也将加速完善。动力电池回收试点工作的开展,标志着我国动力电池回收进入大规模实施阶段。
2020年7月,工信部发布《2020年工作节能与综合利用工作要点》,要求推动新能源汽车动力蓄电池回收利用体系建设;深入开展试点工作,加快探索推广技术经济性强、环境友好的回收利用市场化模式,培育一批动力蓄电池回收利用骨干企业;研究制定《新能源汽车动力蓄电池梯次利用管理办法》,建立梯次利用产品评价机制;依托“新能源汽车国家监测与动力蓄电池回收利用溯源综合管理平台”,健全法规,督促企业加快履行溯源和回收责任。动力电池回收体系的评价机制及法律法规的完善,标志着我国动力电池回收体系框架正在日趋成熟。
虽然顶层设计逐步在完善,但目前动力电池回收受到以下三个问题的掣肘,使政策开展较为困难:
1.电池残值量的测量标准难以估计:动力电池在循环充放电过程中电池容量会逐渐衰减,当衰减至80%以下时,便达到退役状态。而目前对于动力电池的健康度SOH(State-of-health)有很多种定义,包括根据容量衰减定义、根据剩余放电量定义剩余循环次数定义以及根据内阻定义。因此政策制定者对于动力电池残值剩余量的标准测定标准存在一定困难。
2.金属价格波动影响材料回收经济性:金属价格的波动会最终决定动力电池回收市场的盈亏,而金属价格又是受资源供给、技术进步、下游市场综合因素所影响,存在技术周期、产能周期,故金属价格是动力电池回收的市场驱动的决定性要素,既影响动力电池的商业模式,也影响政策制定和执行的有效性。
3.梯次利用技术标准:对于磷酸铁锂电池一个重要的回收方式就是梯次利用,梯次利用方式、安全性等因素困扰着标准制定,标准过高会造成梯次利用市场的萎缩,标准过低又不利于梯次利用市场长期发展。因此,这些问题都需要在实践中不断总结、不断反馈,进一步完善政策标准、以及商业模式。
第一章总论
1.1动力电池回收项目背景
1.2可行性研究结论
1.3主要技术经济指标表
第二章项目背景与投资的必要性
2.1动力电池回收项目提出的背景
2.2投资的必要性
第三章市场分析
3.1项目产品所属行业分析
3.2产品的竞争力分析
3.3营销策略
3.4市场分析结论
第四章建设条件与厂址选择
4.1建设场址地理位置
4.2场址建设条件
4.3主要原辅材料供应
第五章工程技术方案
5.1项目组成
5.2生产技术方案
5.3设备方案
5.4工程方案
第六章总图运输与公用辅助工程
6.1总图运输
6.2场内外运输
6.3公用辅助工程
第七章节能
7.1用能标准和节能规范
7.2能耗状况和能耗指标分析
7.3节能措施
7.4节水措施
7.5节约土地
第八章环境保护
8.1环境保护执行标准
8.2环境和生态现状
8.3主要污染源及污染物
8.4环境保护措施
8.5环境监测与环保机构
8.6公众参与
8.7环境影响评价
第九章劳动安全卫生及消防
9.1劳动安全卫生
9.2消防安全
第十章组织机构与人力资源配置
10.1组织机构
10.2人力资源配置
10.3项目管理
第十一章项目管理及实施进度
11.1项目建设管理
11.2项目监理
11.3项目建设工期及进度安排
第十二章投资估算与资金筹措
12.1投资估算
12.2资金筹措
12.3投资使用计划
12.4投资估算表
第十三章工程招标方案
13.1总则
13.2项目采用的招标程序
13.3招标内容
13.4招标基本情况表
第十四章财务评价
14.1财务评价依据及范围
14.2基础数据及参数选取
14.3财务效益与费用估算
14.4财务分析
14.5不确定性分析
14.6财务评价结论
第十五章项目风险分析
15.1风险因素的识别
15.2风险评估
15.3风险对策研究
第十六章结论与建议
16.1结论
16.2建议
关联报告:
编制单位:北京智博睿
动力电池回收项目申请报告
动力电池回收项目建议书
动力电池回收项目商业计划书
动力电池回收项目资金申请报告
动力电池回收项目节能评估报告
动力电池回收行业市场研究报告
动力电池回收项目PPP可行性研究报告
动力电池回收项目PPP物有所值评价报告
动力电池回收项目PPP财政承受能力论证报告
动力电池回收项目资金筹措和融资平衡方案